Using High Pressure to Prepare Polymorphs of the Ba₂Co_{1−x}Zn_xS₃ (0 \leq x \leq 1.0) Compounds

Francesco Mezzadri,† Edmondo Gilioli,‡ Gianluca Calestani,†,‡ Andrea Migliori,§ Mark R. Harrison,[∥] David A. Headspith,^{||} and M. Grazia Francesconi^{*, ||}

† Dipartimento di Chimica GIAF, Universita' di Parma, Italy

‡ Istituto CNR IMM sez. di Bologna, Italy

§ LAMEL, CNR Bologna, Italy

∥ Department of Chemistry, University of Hull, United Kingdom

S Supporting Information

ABSTRACT: In this work, high pressure was used as a tool to induce structural transition and prepare metastable polymorphs of ternary sulfides. Structural transformations under high pressure of compounds belonging to the Ba₂Co_{1-x}Zn_xS₃ $(0 \le x \le 1.0)$ series were studied using X-ray diffraction and electron microscopy. All members of the $Ba_2Co_{1-x}Zn_xS_3$ series show the $Ba₂CoS₃$ -type one-dimensional structure, but, after heating under pressure, the Ba_2CoS_3 compound $(x = 0)$ separates into BaS and the two-dimensional BaCoS_{2−δ} ($\delta \approx 0$),

while Ba₂Co_{1−x}Zn_xS₃ compounds with $x \ge 0.25$ maintain their one-dimensional features but rearrange into polymorphs showing the Ba₂MnS₃-type structure. All structural transformations can be linked to shortening in interchain metal–metal distances caused by the high pressure, and the role of the zinc in preventing loss of one-dimensionality is discussed.

■ INTRODUCTION

We exploited high pressure to prepare a series of new polymorphs within the Ba₂Co_{1−x}Zn_xS₃ (0 ≤ x ≤ 1) series and investigate the stability of their one-dimensional structure. The characterization of one-dimensional materials is usually welcome, as these systems have often been considered as a link between polymers or linear inorganic complexes and solid-state materials.¹ Furthermore, one-dimensional compounds are currently the object of renewed interest, due to their potential to form i[no](#page-7-0)rganic nanotubes and/or nanowires, without the use of templates or capping agents.

As well as chemical cationic and anionic substitutions, high pressure can be used as a tool for tuning the structure and properties of inorganic materials by varying interatomic distances and oxidation and coordination numbers, while observing changes in physical properties. The advantage of using high pressure on known materials to modify their structure and physical properties is that all the changes can be related to the changes in bond distances in a more straightforward manner than is possible with chemical routes, which always involve changes in composition and outer electron configuration of the ions. $2,3$

Sulfides are a class of relatively underexplored compounds compared to oxides, due, in part, [to](#page-7-0) the greater experimental requirements for the synthesis of non-oxide materials but also to the enormous interest constantly devoted to the chemistry of oxides. However, with progress in preparation methods, the investigation of non-oxide materials has gained pace, fueled by the interesting and often unique physical properties they reveal.

The higher polarizability of the sulfide ion, relative to the oxide ion, ensures that sulfides are in general less ionic than oxides, and therefore, low-dimensional structures are encountered more frequently in sulfides.

One group of compounds, investigated for their quasi-onedimensional magnetic structures, is the $Ba₂MS₃$ (M = Mn, Fe, Co, Zn, Cd, Hg) series.

Two families of structurally similar sulfides show this 213 stoichiometry: $Ba₂MS₃$ with $M = Mn$, Hg, Cd and $Ba₂MS₃$ with $M = Fe$, Co, Zn (Figure 1). Both Ba₂MS₃ families show onedimensional chains of corner-linked M-S tetrahedra interleaved by Ba^{2+} cations and two [cr](#page-1-0)ystallographically different sites for Ba^{2+} . However, Ba_2MS_3 (M = Fe, Co, Zn) show the K_2CuCl_3 type structure, while $Ba₂MS₃$ (M = Mn, Hg, Cd) show the K_2 AgI₃-type structure. A full description of the two structures and their similarities and differences is reported in the discussion of this paper.

 $Ba₂MnS₃$ is insulating with a room temperature resistivity of $10^2 - 10^3$ Ω cm.⁴ The resistivity of Ba₂CoS₃ is much lower at \sim 10⁻¹ Ω cm and thermopower measurements were indicative of metal-like [co](#page-7-0)nduction.⁵ An investigation into Ba_2FeS_3 suggests limited electron delocalization. The high resistivity

Received: August 18, 2011 Published: December 16, 2011

Figure 1. Structure of (a) $Ba₂MS₃$ (M = Zn, Co, Fe) and (b) $Ba₂MS₃$ (M = Mn, Hg, Cd). The dark and light gray spheres represent the barium and sulfur, respectively. The gray polyhedra are transition-metal-centered.

(10⁴ Ω cm), the effective magnetic moment of 5.29 $\mu_{\rm B}$, and Mössbauer spectroscopy suggest that iron is present as Fe²⁺⁶.

 $Ba₂ZnS₃$ was first synthesized by Schnering and Hoppe in 1961 who found an orthorhombic unit cell of space group 6[2](#page-7-0), *Pnma*, with parameters of $a = 12.05$ Å, $b = 12.65$ Å, and $c = 4.21$ Å (no standard deviations were quoted). $B_4C_0S_3$ was first synthesized by Hong and Steinfink in a 1972 investigation into Ba–Fe–S phases, and was found to be iso[st](#page-7-0)ructural to Ba_2FeS_3 and $Ba₂ZnS₃$.⁸ An investigation into the magnetic susceptibilities of Ba_2FeS_3 , Ba_2CoS_3 , and Ba_2MnS_3 showed features consistent wi[th](#page-7-0) quasi-one-dimensional antiferromagnetic shortrange ordering.⁹ Intrachain interactions, J, of -20 , -15 , and −12 K (in good agreement with value of −12.3(5) K previously reported for $Ba₂MnS₃$ $Ba₂MnS₃$ and $Ba₂MnSe₃)¹⁰$ were found for Ba₂FeS₃, Ba₂CoS₃, and Ba₂MnS₃. Long range magnetic ordering was found for all three compounds at 4.2 [K](#page-7-0) due to interchain interactions.⁹ The magnetic susceptibility of $Ba₂CoS₃$ has been reinvestigated, and the data again showed a broad peak indicative o[f](#page-7-0) one-dimensional magnetic ordering but also a transition to long-range order, at 46 K.^{11,12} Interestingly, Ba₂CoS₃ shows negative magnetoresistance $\sim -1.7\%$ in a 7 T field at 10 K, which is higher than that of t[he o](#page-7-0)nly other onedimensional sulfide, $BaV_{0.8}Ti_{0.2}S_3$, so far reported to show negative MR.⁵ Recently, it was reported that this negative magnetoresistance can be increased up to 9% via partial isovalent sub[sti](#page-7-0)tution of Co^{2+} with the diamagnetic Zn^{2+13}

In this work, we exploited high pressure to prepare a series of polymorphs of compounds belonging to the Ba₂Co_{1−x}Zn_xS₃ (0 $\leq x \leq 1$) series. For $x = 0.0$, Ba₂CoS₃ separates into BaS and BaCoS_{2−δ} ($\delta \approx 0.0$), the two-dimensional sulfide with fivecoordinated Co^{2+} first reported by Snyder et al.,¹⁴ even though a shift in the Co^{2+} position from the 4e site in the P4/nmm is observed in this case. When Zn^{2+} is partially [su](#page-7-0)bstituted for Co^{2+} $(x \ge 0.25)$, monodimensionality and tetrahedral coordination of the transition metals are maintained and a structural transition to the $Ba₂MnS₃$ -type structure takes place, giving new polymorphs of the Ba₂Co_{1-x}Zn_xS₃ (0 ≤ x ≤ 1) series.

EXPERIMENTAL SECTION

The room pressure $Ba_2Co_{1-x}Zn_xS_3$ ($x = 0.0, 0.1, 0.2, 0.5, 1.0$) series was prepared via solid−gas reaction between stoichiometric amounts of zinc oxide, barium carbonate, and cobalt and a CS_2 vapor carried by N_2 gas. Reactions were carried out at 1000 °C for 20 h followed by slow cooling, as described in previous publications.¹³ Carbon disulfide is a liquid with a low vapor pressure. If nitrogen gas is bubbled through liquid CS_2 , the gas acts as a carrier and a vapor [of](#page-7-0) N_2/CS_2 can be passed through a tubular furnace. The nitrogen gas was first passed through concentrated sulfuric acid in order to remove any moisture and then through a Dreschel bottle containing liquid CS_2 , which was in turn connected to the silica work tube of the furnace. Nitrogen gas was used to flush the system of air before the reaction was started, and to remove CS_2 once the reaction was completed. The downstream end of the silica tube was connected to another Dreschel bottle containing paraffin oil, which sealed the system from the air and acted as a postreaction scrubber, thus reducing the release.

Heating under HP was carried out using a multianvil apparatus. Polycrystalline Ba₂Co_{1−x}Zn_xS₃ samples were encapsulated into Pt foils and placed into a Walker-type module. The pressure was increased up to 60 kbars at a rate of 1 bar/min, then the capsule was heated up to 950 °C at a rate of 50° C/min. After 2 h in these conditions, the sample was cooled down to room temperature by switching off the heater. The pressure was finally slowly released at 0.4 bar/min.

Powder X-ray diffraction (PXRD) was carried out using a Thermo Electron ARL X′tra diffractometer equipped with a Si(Li) solid state detector and CuK_{α} radiation. Diffraction patterns were collected in the 15−70° 2θ range, with 0.02 step and counting times ranging from 1 to 5 s.

Single crystal X-ray diffraction was carried out using a Bruker APEX II diffractometer equipped with a CCD area detector by using graphite monochromatized Mo K_{α} radiation. Structure solution was performed using the Sir2004 program,¹⁵ while refinements were carried out using Shelx97.¹⁶

Transmission electron [m](#page-7-0)icroscopy (TEM) measurements were perform[ed](#page-7-0) using a Philips TECNAI F20 instrument operating at 200 kV. The specimens were prepared by grinding the powder in isopropyl alcohol and evaporating the suspension on a copper grid covered with a holey carbon film.

■ RESULTS

Powder X-ray Diffraction(PXRD). The PXRD patterns of Ba_2CoS_3 , $Ba_2Co_{0.5}Zn_{0.5}S_3$ and Ba_2ZnS_3 before (RP) and after heating at high pressure (HP) are shown in Figures 2, 4, and 5.

The PXRD patterns in Figure 2 show that structural changes have occurred after [he](#page-2-0)ating $Ba₂CoS₃$ (RP). The p[eaks](#page-2-0) in the PXRD pattern of $Ba₂CoS₃$ heated under pressure were indexed using the structure of Ba $\cos_{2-\delta}^{14,17,18}$ $\cos_{2-\delta}^{14,17,18}$ $\cos_{2-\delta}^{14,17,18}$ as a model for the main phase, and of BaS for the secondary phase. More unidentified impurities are present. Ba₂CoS₃ [\(](#page-7-0)[Pnam](#page-7-0), a = 12.000(1) Å, b = 12.470(1) Å, and $c = 4.205(2)$ Å) displays the one-dimensional K₂CuCl₃-type structure, whereas BaCoS_{2− δ} displays the twodimensional $KCoO₂$ -type structure (Figure 3). It appears that high pressure promotes the separation of $Ba₂CoS₃$ into BaS and BaCoS_{2−δ}.

Tetragonal Ba $CoS_{2\cdot\delta}$ is isostructural to Ba[N](#page-2-0)i S_{2} ;¹⁹ however, a decrease in symmetry to orthorhombic or monoclinic is obs[e](#page-7-0)rved when δ increases. It is a metastable compound prepared by heating the mixture of starting reagents above 850

Figure 2. PXRD patterns of Ba_2CoS_3 before (a) and after (b) heating at 950 °C for two hours at $P = 60$ kbars.

Figure 3. Structure of BaCoS_{2−δ}. The larger gray spheres represent the Ba2+ cations and the gray polyhedra represent the Co−S square pyramids.

°C and quenching it in an ice water bath. For a stoichiometric mixture of starting binary sulfides, BaS and CoS, a sulfurdeficient ($\delta \approx 0.2$) BaCoS_{2− δ} is obtained. The stoichiometric phase ($\delta \approx 0.0$) can be obtained only by using excess sulfur.¹⁸ In our case, the PXRD pattern is consistent with a tetragonal symmetry and can be indexed on the basis of a $P4/nmm$ u[nit](#page-7-0) cell with $a = 4.568(1)$ Å, $c = 8.942(2)$ Å), indicating a phase stoichiometry close to $BaCoS₂$. It can, therefore, be inferred that under high pressure $Ba₂CoS₃$ loses BaS stoichimetrically and transforms into BaCoS_{2−δ} with $\delta \approx 0.0$. A structural rearrangement takes place with cobalt expanding its coordination from tetrahedral to square pyramidal, the corner connectivity and one-dimension linear arrangement of the Co–S tetrahedra in Ba₂CoS₃ being lost in favor of edge connectivity and two-dimensional planar arrangement in BaCoS_{2−δ}. Microanalysis on several crystallites confirms that the Ba:Co ratio is a 1:1 ratio.

Figures 4a,b and 5a,b show the PXRD pattern of $Ba_2Co_{0.5}Zn_{0.5}S_3$ and Ba_2ZnS_3 , respectively, prepared at room pressure (RP) and after heating at high pressure (HP). A change in the structure of both compounds, as a consequence of high-pressure heating, is visible from the difference between the two PXRD patterns. The majority of peaks in the PXRD patterns of both $Ba_2Co_{0.5}Zn_{0.5}S_3$ (HP) and Ba_2ZnS_3 (HP) were indexed, using $Ba₂MnS₃$ as a model for the main phase and BaS

Figure 4. PXRD patterns of $Ba_2Co_{0.5}Zn_{0.5}S_3$ (a) before (RP) and (b) after (HP) heating at 950 °C for two hours at $P = 60$ kbars.

Figure 5. PXRD patterns of $Ba₂ZnS₃$ (a) before (RP) and (b) after (HP) heating at 950 °C for two hours at $P = 60$ kbar.

for one of the secondary phases. Other unidentified phases are also present. $Ba_2Co_{0.5}Zn_{0.5}S_3$ and Ba_2ZnS_3 show the onedimensional K_2CuCl_3 -type structure, whereas Ba_2MnS_3 (*Pnma*; $a = 8.814(5)$ Å, $b = 4.302(2)$ Å, $c = 17.048(8)$ Å) shows the one-dimensional K₂AgI₃-type structure.²⁰ It appears that high pressure promotes a structural rearrangement from the K_2CuCl_3 -type structure to the K_2AgI_3 -type structure, thus giving new polymorphs of compounds in the Ba₂Co_{1−x}Zn_xS₃ series. Unlike in the case of the $x = 0$ compound, $Ba₂CoS₃$, the one-dimensionality of the structure is maintained and the coordination of the transition metal remains tetrahedral. Microanalyses of several crystallites of selected Ba₂Co_{1-x}Zn_xS₃ samples, confirm that Ba:TM = 2:1.

Interestingly, reacting BaS with Co and S at 950 °C and 60 kbars and BaS with Zn and S under the same conditions gives $BaCoS_2 + BaS$ and the Ba_2ZnS_3 polymorph with the Ba_2MnS_3 type structure, respectively.

Single Crystal X-ray Diffraction. X-ray diffraction was performed on selected single crystals from the samples of Ba_2CoS_3 (HP), $Ba_2Co_{0.4}Zn_{0.6}S_3$ (HP), and Ba_2ZnS_3 (HP). Unit cell and refinement parameters for BaCoS_{2− δ} and two of the

Table 1. Unit Cell and Refinement Parameters for (a) BaCoS_{2−δ} ($\delta \approx 0.0$), (b) Ba₂Co_{0.4}Zn_{0.6}S₃, and (c) Ba₂ZnS₃ Obtained from Single Crystal X-ray Diffraction Data

Table 2. Atomic Coordinates for (a) BaCoS_{2−}δ ($\delta \approx 0.0$), (b) Ba₂Co_{0.4}Zn_{0.6}S₃, and (c) Ba₂ZnS₃ Obtained from Single Crystal X-Ray Diffraction Data

(a) $BaCoS2$												
ATOM	$\boldsymbol{\mathcal{X}}$	$\mathcal{Y}% _{0}$	\boldsymbol{z}		${\cal U}_{11}$ sof	U_{22}		U_{33}	U_{23}	U_{13}	U_{12}	$U_{\rm eq}$
Ba1	3/4	$-1/4$	0.8019(1)	$\mathbf{1}$	0.0172(2)	0.0146(2)	0.0146(2)		$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0.0163(2)
Co1	3/4	$-1/4$	0.4088(1)	$\mathbf{1}$	0.0199(3)	0.0199(3)	0.0170(5)		$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0.0189(2)
S1	1/4	1/4	0.8493(2)	$\mathbf{1}$	0.0188(6)	0.0188(6)	0.0111(8)		$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0.0162(4)
S ₂	0.276(7)	$-0.276(7)$	1/2		0.09(9) 0.25	0.019(9)	0.0223(11)		$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0.020(6)
$Ba_2Co_{0.4}Zn_{0.6}S_3$												
ATOM	$\boldsymbol{\mathcal{X}}$	\mathcal{Y}	\boldsymbol{z}	sof	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}		U_{eq}
Ba1	0.2528(1)	0.4555(1)	$-1/4$	$\mathbf{1}$	0.0168(4)	0.0131(4)	0.0143(4)	Ω	$\mathbf{0}$	$-0.0006(3)$		0.0148(2)
Ba2	0.0808(1)	0.2131(4)	1/4	$\mathbf{1}$	0.0145(4)	0.0155(4)	0.0134(4)	Ω	$\mathbf{0}$	0.0002(3)		0.014(2)
Zn1	$-0.1333(2)$	0.3657(1)	$-1/4$	0.59(4)	0.0120(9)	0.0132(8)	0.0186(9)	Ω	$\mathbf{0}$	0.0003(6)		0.0146(6)
Co1	$-0.1333(2)$	0.3657(1)	$-1/4$	0.41(4)	0.0120(9)	0.0132(8)	0.0186(9)	Ω	$\mathbf{0}$	0.0003(6)		0.0146(6)
S ₁	$-0.1807(4)$	0.2294(2)	$-1/4$	$\mathbf{1}$	0.0134(15)	0.0134(15)	0.0147(15)	Ω	$\mathbf{0}$	0.0002(11)		0.0138(6)
S ₂	$-0.3707(3)$	0.4281(2)	$-1/4$	$\mathbf{1}$	0.0123(16)	0.0139(14)	0.0146(16)	Ω	$\mathbf{0}$	$-0.0001(11)$		0.0136(6)
S3	$-0.0074(4)$	0.3977(2)	$-3/4$	$\mathbf{1}$	0.0165(16)	0.0158(14)	0.0075(14)	$\mathbf{0}$	$\mathbf{0}$	$-0.0003(12)$		0.0133(6)
Ba ₂ ZnS ₃												
ATOM	$\boldsymbol{\mathcal{X}}$	\mathcal{Y}	\boldsymbol{z}	sof	${\cal U}_{11}$	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}		$U_{\rm eq}$
Ba1	0.2540(1)	0.4558(1)	$-1/4$	$\mathbf{1}$	0.0054(3)	0.0045(3)	0.0055(4)	$\mathbf{0}$	Ω	$-0.0007(3)$		0.0052(2)
Ba2	0.0805(1)	0.2133(1)	1/4	$\mathbf{1}$	0.004(3)	0.0067(4)	0.0055(4)	$\mathbf{0}$	$\mathbf{0}$	$-0.0001(3)$		0.0055(2)
Zn1	$-0.1343(2)$	0.3656(1)	$-1/4$	$\mathbf{1}$	0.0025(6)	0.0043(7)	0.0090(8)	$\boldsymbol{0}$	$\mathbf{0}$	$-0.0006(6)$		0.0052(3)
S ₁	$-0.1809(3)$	0.2287(2)	$-1/4$	$\mathbf{1}$	0.0021(12)	0.0036(16)	0.0082(16)	$\boldsymbol{0}$	$\mathbf{0}$	$-0.0001(12)$		0.0046(7)
S ₂	$-0.3722(3)$	0.4281(2)	$-1/4$	$\mathbf{1}$	0.0023(14)	0.0034(14)	0.0084(16)	$\mathbf{0}$	$\mathbf{0}$	$-0.0011(11)$		0.0047(6)
S ₃	$-0.0057(3)$	0.3984(2)	$-3/4$	$\mathbf{1}$	0.0049(13)	0.0042(15)	0.0042(16)	$\boldsymbol{0}$	$\mathbf{0}$	0.0012(12)		0.0044(6)

high pressure polymorphs in the Ba₂Co_{1−x}Zn_xS₃ series are shown in Table 1, atomic coordinates in Table 2, and selected bond distances in Table 3.

For BaCoS_{2− δ}, the S2 atom was initially refined in the 4e site. This resulted in atomi[c](#page-4-0) displacement parameters (a.d.p.s) significantly larger than the ones of S1, in agreement with previous determination.^{14,17,18} Freeing the occupancy ratio for both sulfur anions did not result in any significant change, confirming the stoichio[metry o](#page-7-0)f the compound as close to $\delta \approx$ 0.0. Taking into account that the large U_{11} and U_{22} values for S2 may be due to a displacement from the fourfold axis, S2 was then placed on the eightfold positions 8 h, with the occupancy fixed to one-half. The refinement converged for S2 located on a disordered position around the fourfold axis (Table 2a). The shifting of the S2 position normalizes the a.d.p.s and makes two of the four Co−S2 distances equivalent to the Co−S1 distances.

Microscopy. High resolution electron microscopy (HREM), electron diffraction (ED), and energy dispersive X-

ray spectroscopy (EDX) analyses were performed on the Ba_2CoS_3 , $Ba_2Co_{0.5}Zn_{0.5}S_3$, and Ba_2ZnS_3 samples after heating in high pressure (HP). EDX analyses on $Ba₂CoS₃$ (HP) were performed using several grains and confirmed the 1:1 Ba:Co ratio. The Ba $CoS_{2-\delta}$ -type unit cell from X-ray data was confirmed by the main reflections in the ED pattern (Figure 6). However, very weak satellites are associated with a diffuse streaking, indicating the doubling of the unit cell volume. By [d](#page-4-0)enoting as a_T and c_T the lattice parameters of the fundamental tetragonal cell, the new cell parameters, calculated from ED are $a \approx b = a_{\rm T} \sqrt{2} = 6.4$ Å, $c = c_{\rm T} = 8.9$ Å. A similar cell, associated with the Cmma space group, was previously used to refine both the stoichiometric and sulfur deficient structures.^{14,18} However, it must be noted that the observed superstructure spots violate the C-centered extinction condition, sugges[ting](#page-7-0) the real structure to be primitive. Taking into account the very weak intensity of these satellite spots, the origin of this superstructure is probably attributed to the ordering of the shift of the S2

Table 3. Selected Bond Distances for (a) BaCoS_{2−δ} ($\delta \approx$ 0.0), (b) $Ba_2Co_{0.4}Zn_{0.6}S_3$, and (c) Ba_2ZnS_3 Obtained from Single Crystal X-ray Diffraction Data

(a) $BaCoS2$		(b) $Ba_2Co_{0.4}Zn_{0.6}S_3$		Ba ₂ ZnS ₃		
$Ba1-S1$	3.118(2)	$Ba1-S1$	3.192(3)	$Ba1-S1$	3.191(3)	
$Ba1-S1$	3.255(1)	$Ba1-S2$	3.081(2)	$Ba1-S2$	3.082(2)	
$Ba1-S1$	3.255(1)	$Ba1-S2$	3.081(2)	$Ba1-S2$	3.082(2)	
$Ba1-S1$	3.255(1)	$Ba1-S2$	3.268(2)	$Ba1-S2$	3.318(3)	
$Ba1-S1$	3.255(1)	$Ba1-S3$	3.268(2)	$Ba1-S3$	3.267(2)	
$Ba1-S2$	3.46(2)	$Ba1-S3$	3.290(3)	$Ba1-S3$	3.267(2)	
$Ba1-S2$	3.46(2)	$Ba1-S3$	3.330(3)	$Ba1-S3$	3.303(3)	
$Ba1-S2$	3.46(2)	Avg	3.216(2)	avg	3.216(3)	
$Ba1-S2$	3.46(2)					
avg	3.331(2)	$Ba2-S1$	3.137(2)	$Ba2-S1$	3.139(2)	
		$Ba2-S1$	3.137(2)	$Ba2-S1$	3.139(2)	
$Co1-S1$	2.307(2)	$Ba2-S1$	3.137(2)	$Ba2-S1$	3.144(2)	
$Co1-S2$	2.32(3)	$Ba2-S1$	3.137(2)	$Ba2-S1$	3.144(2)	
$Co1-S2$	2.32(3)	$Ba2-S2$	3.227(3)	$Ba2-S2$	3.235(3)	
$Co1-S2$	2.32(3)	$Ba2-S2$	3.231(2)	$Ba2-S2$	3.235(3)	
$Co1-S2$	2.32(3)	$Ba2-S3$	3.231(2)	$Ba2-S3$	3.240(4)	
avg	2.317(3)	Avg	3.177(2)	avg	3.182(3)	
		$Zn1-S1$	2.333(3)	$Zn1-S1$	2.364(3)	
		$Zn1-S2$	2.351(3)	$Zn1-S2$	2.344(3)	
		$Zn1-S3$	2.456(2)	$Zn1-S3$	2.470(2)	
		$Zn1-S3$	2.456(2)	$Zn1-S3$	2.470(2)	
		Avg	2.404(3)	avg	2.412(3)	
$Co1-Co1$	3.619(6)	$Zn1-Zn1$	4.25(4)	$Zn1-Zn1$	4.25(2)	
$Co1-Co1$	4.565(5)	$Zn1-Zn1$	5.57(5)	$Zn1-Zn1$	5.55(2)	
		$Zn1-Zn1$	5.90(4)	$Zn1-Zn1$	5.88(1)	

Figure 6. ED patterns of a Ba CoS_2 grain taken in [001] zone axis and indexed on the basis of the tetragonal P4/nmm cell: very weak superlattice spots (indicated by arrows and associated to diffuse streaking) are observed.

anions from the 4e site, shown by single-crystal X-ray diffraction data.

EDX analyses performed on $Ba_2Co_{0.5}Zn_{0.5}S_3$ and Ba_2ZnS_3 samples confirmed a composition close to the nominal one, whereas ED and HREM confirmed the $Ba₂MnS₃$ type unit cell, as found via X-ray diffraction. A high-resolution electron microscopy (HREM) image of a $Ba_2Co_{0.5}Zn_{0.5}S_3$ sample is shown in Figure 7.

Figure 7. HREM image of a $Ba_2Co_{0.5}Zn_{0.5}S_3$ sample taken along the a axis; an enlargement of the image is shown in inset (a), compared with the structural model; the corresponding experimental ED pattern and the fast Fourier transform of the image are shown in insets (b) and (c), respectively.

Discussion. The $Ba₂MS₃$ sulfides with $M = Fe$, Co, Zn and M = Mn, Hg, Cd share the same stoichiometry and a number of structural similarities, mainly one-dimensional chains of corner linked M-S tetrahedral interleaved by Ba^{2+} cations (Figure 1). These compounds can be split into two groups of isostructural materials. Ba₂MS₃ (M = Zn, Co, Fe) show the K₂CuCl₃-t[yp](#page-1-0)e structure, while $Ba₂MS₃$ (M = Mn, Hg, Cd) show the $K₂AgI₃$ type structure. In both cases, the corner sharing tetrahedra run along the shortest axis and both structures show two crystallographically independent barium sites with the barium coordinated to seven anions. These barium cations show monocapped trigonal prismatic coordination with the chalcogens, with the capping anion lying above the center of one of the rectangular faces of the prism. Shoemaker analyzed the differences between the K₂CuCl₃ and K₂AgI₃ structures,²¹ and here, we adapt some of those concepts to the Ba_2CoS_3 (*Pnam*, 11.994(2) Å, 12.472(2) Å, 4.201(1) Å)¹² and Ba₂MnS₃ ([Pn](#page-7-0)ma, 8.814(5) Å, 4.302(2) Å, 17.0480(80) Å)²⁰ structures. In order to facilitate direct comparison bet[we](#page-7-0)en the compounds, $Ba₂MS₃$ (M = Mn, Fe, Hg, Cd) has bee[n c](#page-7-0)onsidered redefined in the space group Pnam, rather than Pnma, in which it were originally classified, by inverting the values of the b and c axes.

In both structure types, the monocapped trigonal prisms, centered on $Ba(1)$, form chains of triangular face-sharing polyhedra running along the short axis, c. In line with the description by Shoemaker, the $Ba(1)$ coordination can be extended to include an eighth anion.²¹ This eighth anion can be taken as capping a second rectangular face of the prism, shown by the dashed lines in Figure 8a[. I](#page-7-0)t is these square-based pyramids that separate the MX_4 tetrahedra of the M-X chains in both type of structures. The squa[re](#page-5-0)-based pyramids formed by

Figure 8. Representation of (a) the face sharing chains of Ba(1) centered polyhedra and (b) the edge sharing chains of Ba(2) centered polyhedra.

Figure 9. Representation of the (a) Ba_2CoS_3 -type and (b) Ba_2MnS_3 -type structures. The two crystallographically independent barium positions are represented at the center of the monocapped trigonal prisms in dark and light gray. The black spheres correspond with the transition metal site.

the original capping anion, to the right-hand side of the trigonal prismatic chains, also form tetrahedra of sulfide anions without a metal in the center.

The Ba(2) polyhedra form chains of edge sharing monocapped trigonal prisms along c , with the prism axis perpendicular to the c-axis. To the right of these chains of monocapped trigonal prisms, as represented in Figure 8b, is a trigonal prismatic void that also shares a face with the M-X chains. On the opposite side of this polyhedral chain, the capping anions give rise to another, corner-sharing, chain of unoccupied tetrahedra. It is reasonable to speculate that it is the presence of these voids that plays a role in the interconversion of the Ba_2CoS_3 -type structure into the Ba_2MnS_3 -type structure under high pressure.

The difference between the two structure types is the manner in which these Ba−S chains are arranged with respect to one another, which can be seen more clearly when observing projections down the structures down the [001] as shown in Figure 9. In $Ba₂MnS₃$, the $Ba(1)S₇$ polyhedra form cornerlinked linear chains and the $Ba(2)S₇$ form edge-sharing linear chains. However, in Ba_2CoS_3 the $Ba(1)S_7$ and $Ba(2)S_7$ polyhedra both form face-sharing dimeric units. The $Ba(1)S_7$

dimeric units are isolated from one another, whereas the dimeric Ba(2)S₇ polyhedra are connected to four other Ba(2)S₇ dimeric units via corner linkages. This differing arrangement of the BaS₇ polyhedra for Ba₂MnS₃ and Ba₂CoS₃ results in a different arrangement of the $MS₄$ corner linked linear chains as shown in Figure 9. Ba(1)S₇ and Ba(2)S₇ polyhedra in Ba₂MnS₃ are surrounded by two and four Mn−S tetrahedral chains, respectively, while in $Ba₂CoS₃$, they are both surrounded by three Co−S tetrahedral chains.

Hull and Berastegui studied a series of alkaline-transition metal halides showing either the Ba_2CoS_3 -type or the Ba_2MnS_3 type structure and found that the formation of one or the other is dictated by the ratio r_A/r_M with A = transition metal and M = alkaline metal.³ In particular, the Ba₂CoS₃-type structure is favored for the smaller values of the r_A/r_M ratio. We calculated the $r_{\rm M}^{2+}/r_{\rm Ba}^{2+}$, [wi](#page-7-0)th $\rm M^{2+}$ = Mn, Co, Zn, Cd, Hg, for the Ba₂MS₃ family with the data available to date, and found that compounds with $r_{\rm M^{2+}}/r_{\rm Ba^{2+}} \leq 0.435$ exhibit the Ba₂CoS₃-type structure, whereas compounds with $r_{\rm M}^{2+}/r_{\rm Ba}^{2+} \leq 0.478$ exhibit the $Ba₂MnS₃$ -type structure (Table 4).

All compounds belonging to the $Ba_2Co_{1-x}Zn_xS_3$ solid solution show the Ba_2CoS_3 -type [st](#page-6-0)ructure, but our results

Table 4. $r_{\rm M^{2+}}/r_{\rm Ba^{2+}}$ Radius Ratios for Ba₂CoS₃-Type and $Ba₂MnS₃-Type Structures$

show that, after heating in high pressure, they turn into polymorphs with the $Ba₂MnS₃$ -type structure. Considering that high pressure tends to change the distances and angles between atoms in a structure, we performed a comparison of bond lengths and angles between the (RP) and (HP) compounds. Comparison between Ba−S and M−S bond-length do not reveal significant differences between the two polymorphs. However, differences are observed between the M−M interchain distances, i.e., the distances between the transition metal at the center of M−S tetrahedra belonging to neighboring chains. In fact, the M−M interchain distances in $Ba₂CoS₃$ are 6.13(7) and 6.57(6),¹² but they are shorter in Ba₂MnS₃, namely, 5.457 and 5.967[3.](#page-7-0)²²

Table 5. M−M Interchain Distance[s o](#page-7-0)f Compounds with the $Ba₂CoS₃$ -Type and $Ba₂MnS₃$ -Type Structures

Compound $Ba2MS3$	$M-M$ interchain (\AA)	Structure
Ba ₂ ZnS ₃ RP	6.17; 6.67^{22}	Ba_2CoS_3 -type
Ba_2Co_0 ₅ Zn_0 ₅ S_3 RP	6.14(3); 6.61(3) ¹³	Ba_2CoS_3 -type
Ba ₂ CoS ₃ RP	$6.13(7); 6.57(6)^{12}$	Ba_2CoS_3 -type
$Ba_2Co_{0.4}Zn_{0.6}S_3$ HP	$5.57(5)$; $5.90(4)$ [this work]	$Ba2MnS3$ -type
Ba ₂ ZnS ₃ HP	$5.55(2)$; $5.88(1)$ [this work]	$Ba2MnS3$ -type
Ba ₂ MnS ₂ RP	5.46; 5.97^{22}	$Ba2MnS3$ -type

Table 6. Selected Distances [an](#page-7-0)d Angles for Compounds of the (RP) Ba₂Co_{1−x}Zn_xS₃ Series with $x \ge 0$

Table 6 shows a comparison between the M−M interchain distances of compounds with the $Ba₂CoS₃$ -type and the $Ba₂MnS₃$ -type structures.

The data in Table 5 show that the average M−M interchain distances for compounds showing the $Ba₂CoS₃$ -type structure are 6.15 Å and 6.62 Å, whereas for compounds showing the $Ba₂MnS₃$ -type structure, they are 5.53 Å and 5.92 Å. The critical M−M value is probably around 6 Å.

From these data, it can be inferred that the compression exercised by high pressure compressing the materials with $Ba₂CoS₃$ -type structure is felt on the *ac* plane, perpendicular to the b axis, along which run the chains of tetrahedral M−S. The unoccupied tetrahedral around the $Ba(1)$ -S and $Ba(2)$ -S chains probably provides empty space for the structure to rearrange.

Another important result is that $Ba₂CoS₃$ (RP) transforms into BaCoS_{2−δ}, whereas all the compounds belonging to the Zn-substituted series $Ba_2Co_{1-x}Zn_xS_3$ (RP) transform into polymorphs with the $Ba₂MnS₃$ -type structure. This indicates that the presence of Zn^{2+} partially substituted on the Co^{2+} site is the determining factor to obtain polymorphs. Zn^{2+} shows a slightly larger ionic radius ($r = 0.60$ Å) than Co^{2+} ($r = 0.58$ Å) in tetrahedral coordination; however, this small difference may be the determining factor in the formation of the (HP) polymorphs.²³ Using the $r_{\rm M}^{2+}/r_{\rm Ba}^{2+}$ ratio, it can be argued that for $r_{\rm M^{2+}}/r_{\rm Ba^{2+}} \leq 0.420$ either the Ba₂CoS₃-type or the Ba₂MnS₃type structu[res](#page-7-0) are not stable anymore and the 112 structure is formed, with consequent loss of BaS. Furthermore, by observing the changes in bond lengths and angles introduced by the substitution of Zn^{2+} in Ba_2CoS_3 (RP), it can be noticed that the bond distances do not change significantly and neither do the angles, moving from $x = 0$ to $x > 0$. However, Ba_2CoS_3 was found to show very distorted Co−S tetrahedra, as can be seen from the values of the angles, 24 but the substitution of Zn^{2+} for Co^{2+} seems to favor all angles approaching 109.47°, i.e., the angle of the perfect tetrahedron [an](#page-7-0)d, therefore, a tendency to remove the distortion. The changing of the angles with increasing Zn content is particularly visible in the variation of the $S(3)-M-S(3)$ angle (Table 6). This may indicate that, under high pressure, the tetrahedral coordination of $Co²⁺$ in the $x = 0$ compound, Ba_2CoS_3 , is too distorted to be maintained but the substitution of Zn^{2+} removes enough distortion for the tetrahedral coordination to survive. However, the Ba_2CoS_3 -type structure is transformed into the $Ba₂MnS₃$ -type structure due to the shortening of the M−M interchain distances.

■ **CONCLUSIONS**

We have reacted selected members of the Ba₂Co_{1−x}Zn_xS₃ (0 ≤ $x \le 1.0$) series at 950 °C and 60 kbars pressure. All the starting materials show the Ba_2CoS_3 -type structure. However, for $x = 0$ Ba₂CoS₃ separates into BaS and BaCoS_{2−δ}, whereas for $x > 0$, a series of polymorphs showing the $Ba₂MnS₃$ -type structure are obtained. The formation of the $Ba₂MnS₃$ -type polymorphs implies retention of one-dimensionality and tetrahedral coordination of the transition metal, whereas the formation of BaCoS_{2−δ} implies loss of one-dimensionality in favor of bidimensionality and loss of the tetrahedral coordination of the metal in favor of square pyramidal coordination. It is argued that the partial $\text{Co}^{2+}/\text{Zn}^{2+}$ substitution is the crucial factor in the formation of the one-dimensional polymorphs over $BaCoS_{2−δ}$, which is determined by the high pressure shortening the M-M interchain distance.

■ ASSOCIATED CONTENT

6 Supporting Information

CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INFOR](http://pubs.acs.org)MATION

Corresponding Author

*E-mail m.g.francesconi@hull.ac.uk.

■ ACKNOWLEDGMENTS

M. R. Harrison and M. G. Francesconi thank the EPSRC for the award of a research grant (EP/E029469). M. G. Francesconi also acknowledges the RSC for the award of a travel grant (08 10 621). We wish to acknowledge the use of the Chemical Database Service at Daresbury.

ENDERGEMENT REFERENCES

- (1) De Jongh, L. J.; Miedema, A. R. Adv. Phys. 1974, 23, 1−260.
- (2) Badding, J. V.; Meng, J. F.; Polvani, D. A. Chem. Mater. 1998, 10, 2889−2894.
- (3) Hull, S.; Berastegui, P. J. Solid State Chem. 2004, 177, 3156− 3173.
- (4) Greaney, M. A.; Ramanujachary, K. V.; Teweldemedhin, Z.; Greenblatt, M. J. Solid State Chem. 1993, 107, 554−562.
- (5) Baikie, T.; Hardy, V.; Maignan, A.; Francesconi, M. G. Chem. Commun. 2005, 5077−5079.
- (6) Reiff, W. M.; Grey, I. E.; Fan, A.; Eliezer, Z.; Steinfink, H. J. Solid State Chem. 1975, 13, 32−40.
- (7) Schnering, v. H. G.; Hoppe, R. Z. Anorg. Allg. Chem. 1961, 312, 99−109.
- (8) Hong, H. Y.; Steinfin., H J. Solid State Chem. 1972, 5, 93−&.
- (9) Nakayama, N.; Kosuge, K.; Kachi, S.; Shinjo, T.; Takada, T. Abstr. Pap. Am. Chem. Soc. 1979, 58−58.
- (10) Grey, I. E.; Steinfink, H. Inorg. Chem. 1971, 10, 691−696.
- (11) Baikie, T.; Maignan, A.; Francesconi, M. G. Chem. Commun. 2004, 836−837.
- (12) Headspith, D. A.; Battle, P. D.; Francesconi, M. G. J. Solid State Chem. 2007, 180, 2859−2863.
- (13) Harrison, M. R.; Hardy, V.; Maignan, A.; Francesconi, M. G. Chem. Commun. 2009, 2214−2216.
- (14) Snyder, G. J.; Gelabert, M. C.; Disalvo, F. J. J. Solid State Chem. 1994, 113, 355−361.
- (15) Burla, M. C. C., R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl.
- Crystallogr. 2005, 38, 381.
- (16) Sheldrick, G. M. 1993.
- (17) Baenziger, N. C.; Grout, L.; Martinson, L. S.; Schweitzer, J. W. Acta Crystallogr., Sect. C 1994, 50, 1375−1377.
- (18) Gelabert, M. C.; Brese, N. E.; DiSalvo, F. J.; Jobic, S.; Deniard, P.; Brec, R. J. Solid State Chem. 1996, 127, 211−221.
- (19) Steinfink, I. E. G. a. H. J. Am. Chem. Soc. 1970, 92, 5093.
- (20) Grey, I. E.; Steinfin., H Inorg. Chem. 1971, 10, 691−&.
- (21) Shoemaker, C. B. Z. Kristallogr. 1973, 137, 225−239.
- (22) Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746−749.
- (23) Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751−756.
- (24) Barnes, A. D. J.; Baikie, T.; Hardy, V.; Lepetit, M. B.; Maignan,
- A.; Young, N. A.; Francesconi, M. G. J. Mater. Chem. 2006, 16, 3489− 3502.